Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Properties of 7488 thunderstorms are summarized for June–September 2022 during the Tracking Aerosol Convection Interactions Experiment (TRACER) field campaign Houston, Texas, using polarimetric weather radar and VHF 3D Lightning Mapping Array data. Automated tracking of storms linked each instrument’s measurements to a data-defined, time-evolving storm footprint. Within each storm, the depth and magnitude of episodic columns of radar differential reflectivity and specific differential phase quantified the prevalence of updrafts that activated mixed-phase precipitation pathways. Lightning measurements further distinguished the degree of rimed precipitation formation: the fraction of tracks with lightning varied from day to day and cells with lightning had stronger polarimetric columns. Track-level correlation of the lightning flash rate with radar polarimetric measures had substantial spread, showing that lightning provides an additional signal of mixed-phase precipitation processes that can complement future studies of thermodynamic and aerosol controls on cloud microphysics in the Houston region.more » « less
-
Abstract The Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) field project deployed two aircraft and ground-based assets in the vicinity of Houston, TX, between 27 May 2022 and 2 July 2022, examining how meteorological conditions, dynamics, and aerosols control the initiation, early growth stage, and evolution of coastal convective clouds. To ensure that airborne and ground-based assets were deployed appropriately, a Forecasting and Nowcasting Team was formed. Daily forecasts guided real-time decision making by assessing synoptic weather conditions, environmental aerosol, and a variety of atmospheric modeling data to assign a probability for meeting specific ESCAPE campaign objectives. During the research flights, a small team of forecasters provided “nowcasting” support by analyzing radar, satellite, and new model data in real time. The nowcasting team proved invaluable to the campaign operation, as sometimes changing environmental conditions affected, for example, the timing of convective initiation. In addition to the success of the forecasting and nowcasting teams, the ESCAPE campaign offered a unique “testbed” opportunity where in-person and virtual support both contributed to campaign objectives. The forecasting and nowcasting teams were each composed of new and experienced forecasters alike, where new forecasters were given invaluable experience that would otherwise be difficult to attain. Both teams received training on forecast models, map analysis, HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) modeling and thermodynamic sounding analysis before the beginning of the campaign. In this article, the ESCAPE forecasting and nowcasting teams reflects on these experiences, providing potentially useful advice for future field campaigns requiring forecasting and nowcasting support in a hybrid virtual/in-person framework.more » « less
-
Abstract. There is a continuously increasing need for reliable feature detection and tracking tools based on objective analysis principles for use with meteorological data. Many tools have been developed over the previous 2 decades that attempt to address this need but most have limitations on the type of data they can be used with, feature computational and/or memory expenses that make them unwieldy with larger datasets, or require some form of data reduction prior to use that limits the tool's utility. The Tracking and Object-Based Analysis of Clouds (tobac) Python package is a modular, open-source tool that improves on the overall generality and utility of past tools. A number of scientific improvements (three spatial dimensions, splits and mergers of features, an internal spectral filtering tool) and procedural enhancements (increased computational efficiency, internal regridding of data, and treatments for periodic boundary conditions) have been included in tobac as a part of the tobac v1.5 update. These improvements have made tobac one of the most robust, powerful, and flexible identification and tracking tools in our field to date and expand its potential use in other fields. Future plans for tobac v2 are also discussed.more » « less
-
Abstract A multi-agency succession of field campaigns was conducted in southeastern Texas during July 2021 through October 2022 to study the complex interactions of aerosols, clouds and air pollution in the coastal urban environment. As part of the Tracking Aerosol Convection interactions Experiment (TRACER), the TRACER- Air Quality (TAQ) campaign the Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) and the Convective Cloud Urban Boundary Layer Experiment (CUBE), a combination of ground-based supersites and mobile laboratories, shipborne measurements and aircraft-based instrumentation were deployed. These diverse platforms collected high-resolution data to characterize the aerosol microphysics and chemistry, cloud and precipitation micro- and macro-physical properties, environmental thermodynamics and air quality-relevant constituents that are being used in follow-on analysis and modeling activities. We present the overall deployment setups, a summary of the campaign conditions and a sampling of early research results related to: (a) aerosol precursors in the urban environment, (b) influences of local meteorology on air pollution, (c) detailed observations of the sea breeze circulation, (d) retrieved supersaturation in convective updrafts, (e) characterizing the convective updraft lifecycle, (f) variability in lightning characteristics of convective storms and (g) urban influences on surface energy fluxes. The work concludes with discussion of future research activities highlighted by the TRACER model-intercomparison project to explore the representation of aerosol-convective interactions in high-resolution simulations.more » « lessFree, publicly-accessible full text available August 4, 2026
An official website of the United States government
